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I discuss key variables for testing the reconstruction performance of an EIC
DVCS simulation The equations defined here are incorporated in my test codes
DVCS_Analysis_v2.cpp and CoherentDVCS_MC.cxx located at https://github.

com/cehyde/CORE_HepMC
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I. INTRODUCTION
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In this document, I define key variables for testing the DVCS reconstruction performance

of an EIC DVCS simulation. The notes include effects of beam emittance and crossing angle.

The DVCS cross section is differential in 5 kinematic variables. I suggest the following

invariant set:

{Q27 IB, AQ =1, q)ev q)’y’y}

(1)

The cross section is independent of ®, on an unpolarized (or spin-0) ion, but has a non-

trivial ®, dependence relative to the direction of polarization of a transversely polarized ion.

The usual azimuthal angles in the laboratory frame are not intrinsically Lorentz invariant,



I will give a proper definition below. It is also useful to define a subsidiary variable
A=A

to be defined below.
Due to the emittance (longitudinal and transverse) of the incident beams, one must also
consider the variation of the cross section with s, = (¢ + P)?. Thus I suggest to histogram

the reconstructed minus generated values of the following seven variables:
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II. BEAM PARAMETERS AND EMITTANCE

The nominal incident electron and ion four-momenta are k) and P}, respectively. The

coordinate system and crossing angle 0, ¢c are defined as

keoy™ = [Ee,0,0,—K], k>0
Py = [Ea, Pasinfc cos ¢, Py sin O cos ¢, Py cos ¢, P(20) = M3 (3)

For IP6, 6 = 25 mrad and ¢ = 7. For IP8, 6 = 35 mrad and ¢ = 0. The event-by-event
electron and ion four-momenta are k* and P*. Fluctuations are assumed to be gaussian,
with rms values defined by the beam emittances and the interaction point S-functions as
defined in the EIC CDR (https://www.bnl.gov/ec/files/EIC_CDR_Final.pdf). The rms

angular spread of the beam in = and y at the IP is given by (numerical values for protons

of 275 GeV at IP6)
, € 11.3- 10 m
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=, /=—=\——F—=0.12 d. 4
"W =5 =V oorzm A @

The proton rms momentum spread at 275 GeV is

U(P> —4
—2 =6.6-10
P

with a time-energy emittance ellipse of area

e, = 0.7 ns - GeV (5)



Thus the uncertainty in the event-by-event CM energy squared is

As, = (k+ P)* — (ko + P)?

Table 1.1: Maximum luminosity parameters.

Parameter hadron electron
Center-of-mass energy [GeV] 104.9

Energy [GeV] 275 10
Number of bunches 1160
Particles per bunch [101°] 6.9 17.2
Beam current [A] 1.0 2.5
Horizontal emittance [nm] 11.3 20.0
Vertical emittance [nm] 1.0 1.3
Horizontal B-function at IP B} [cm] 80 45
Vertical B-function at IP B, [em] 7.2 5.6
Horizontal / Vertical fractional betatron tunes 0.228/0.210 0.08/0.06
Horizontal divergence at IP ¢, [mrad] 0.119 0.211
Vertical divergence at IP (7;/ [mrad] 0.119 0.152
Horizontal beam-beam parameter ¢, 0.012 0.072
Vertical beam-beam parameter ¢, 0.012 0.1
IBS growth time longitudinal /horizontal [hr] 29/2.0 -
Synchrotron radiation power [MW] - 9.0
Bunch length [cm] 6 0.7
Hourglass and crab reduction factor [17] 0.94
Luminosity [10%* ecm~25s71] 1.0

FIG. 1. Beam parameters from EIC CDR.

III. KINEMATIC RECONSTRUCTION

A DVCS simulation, whether parametrized MC or full GEANT4 will produce final state

electron, ion, and photon with
Generated four-momenta: {£', P, ¢ }cen,

Reconstructed four-momenta: {£’, P’ ¢'}.



Table 1.2: EIC proton beam parameters.

Parameter 41GeV 100GeV 275GeV
Bunch intensity [101°] 2.6 6.9 6.9
RMS Horizontal normalized emittance [mm mrad] 19 4.0 2.8
RMS Vertical normalized emittance [mm mrad] 0.45 0.22 0.45
Longitudinal bunch area [eV s] 0.2 04 0.7
RF frequency [MHz] 197 591 591
RF voltage [MV] 10.5 16.1 28
RMS momentum spread [10~*] 10.4 9.0 6.6
RMS bunch length [cm] 7.5 7 6
Longitudinal emittance IBS growth time [hours] 3.8 2. 3.4
Horizontal emittance IBS growth time [hours] 3.4 2.3 2.0
(without coupling)

FIG. 2. Energy dependence of proton beam parameters, from EIC CDR. Note that normalized
emittance ey (this table) and geometrical emittance values € (Table 1.1 reproduced in Fig. 1) are
related by € = ey - M/ P for a beam particle of mass M and momentum P.

for the scattered electron, ‘recoil’ ion, and final photon, respectively.

A. DIS and DVCS Invariants

The reconstructed electron DIS variables are defined in relation to the nominal beam
parameters as:

Q%{ec = Qk(o) ’ kiiec - 2m2

e

2
QRec MA S 1 (7)
2(ky — k') - Py My

TBRec =
In contrast, the generated values are based on the event-by-event beam kinematics:

Qéen =2k - k/Gen - 2m§

Qéen MA (8)
2(k — kien) - Po My

TB,Gen —
There are at least two natural ways to define the momentum transfer four-vector:

AL = (k=K —q) o Aky=(P~P) (9)



This leads to the reconstructed and generated invariants

Ag%Rec = (k?() —k - q,)2
A?VN,RGC = (P/ - P0)2 (10)
Azv,Gen = (kGeH - k/Gen - qé}en)2 = (Péen - PGGH)2 = A?VN,Gen (11>

B. Light Cone Vectors, Azimuthal Angles and Transverse Components

[ now give invariant definitions of the azimuthal angles and transverse momentum transfer
A%, in a manner consistent with the usual definitions in the target rest frame. To accomplish
this, define two sets of light cone vectors, first in the ep frame, and second in the v*p frame.
For simplicity, these can be constructed from the nominal beam momenta kfj, F) and the

generated final photon four-vector g,

1.  Electron Kinematics

Defining
me M3

S, = VaE <1 (12)

we construct light cone vectors

m?2/(k - P)
b Er 4 e P
e a( 1+V1_5e )
2 .
ﬁg:&’(P“+—MA/(k P)k“)
1++v1—0.
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- - 14++/1—0.
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2(k - P)V/1+0.

In this frame, the ‘+’ and ‘—'components of a four-vector A* are defined by AT = A-n and
A= = A-n. With this convention in a frame in which the electron and ion are colliding
head-on, the incident electron and ion travel in the —Z and +Z2 directions, respectively.

To define Lorentz invariant azimuthal angles, we construct space-like unit vectors X*,



Y# such that

Xf:_1zye2, X, Y.=0
X.-n=0=X,-n, Y, n=0=Y.-n

e‘uypa-ﬁgX;/Y'epng = 17 with €0123 — 1 (14)

Since the EIC beams will collide nominally in the z ® z plane, we start with a reference

vector

v, =10,0,1,0]. (15)

Then remove the light cone components and renormalize

Y2 = [V = (Yoo - 1) = (Voet - 7)) /V/T+2 (Voo 1) (Vo 1) (16)

The final basis vector is constructed as
Xeo = €upentnY? (17)
The Lorentz-invariant azimuthal angle of the scattered electron around the collision axis is

O, = atan2 (—k' - Y., —k" - X,) (18)

2. DVCS Kinematics

To define the DVCS kinematics, construct a second light cone frame based on (generated)

g" and P*.

o e
“ (g Py
g = 1 A pu %
2(1+0q) | 4P My (14 /1+0q)
e 1 Pu(1+\/1+6Q)_qHMA (19)
I 2(1+4q) | Ma q-P

The space-like unit vectors are defined such that Y, oc k x k'.

Y/ = —sin®. X!+ cos P V!

Xoo = Cupa Y (20)



The azimuthal angle ®,, = —®yx of the final photon and the transverse momentum transfer

squared A% = —A? are defined by
@cos@mv =—(k—kK—-¢) X,=—(P'-—P)- X,
VAZsindyy = (kK —¢) Y, = ~(P'~ P).Y, (21)
Note, however, (k — k') - X, =0 = (k — k') - Y, buy construction. Equivalently
©,y = atan2 (—¢'- Yy, —¢' - X,)
Al =(¢ X)) + (¢ Yy (22)

Of particular importance to DVCS, the reconstructed value of Agev is independent of the

fluctuations in the initial ion beam momentum. This is not true for A% .



