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I discuss key variables for testing the reconstruction performance of an EIC

DVCS simulation The equations defined here are incorporated in my test codes

DVCS Analysis v2.cpp and CoherentDVCS MC.cxx located at https://github.

com/cehyde/CORE_HepMC
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I. INTRODUCTION

In this document, I define key variables for testing the DVCS reconstruction performance

of an EIC DVCS simulation. The notes include effects of beam emittance and crossing angle.

The DVCS cross section is differential in 5 kinematic variables. I suggest the following

invariant set: {
Q2, xB,∆

2 = t,Φe,Φγγ

}
(1)

The cross section is independent of Φe on an unpolarized (or spin-0) ion, but has a non-

trivial Φe dependence relative to the direction of polarization of a transversely polarized ion.

The usual azimuthal angles in the laboratory frame are not intrinsically Lorentz invariant,
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I will give a proper definition below. It is also useful to define a subsidiary variable

∆2
⊥ = −∆2

⊥

to be defined below.

Due to the emittance (longitudinal and transverse) of the incident beams, one must also

consider the variation of the cross section with se = (q + P )2. Thus I suggest to histogram

the reconstructed minus generated values of the following seven variables:{
se, Q

2, xB,∆
2,∆2

⊥,Φe,Φγγ

}
(2)

II. BEAM PARAMETERS AND EMITTANCE

The nominal incident electron and ion four-momenta are kµ0 and P µ
0 , respectively. The

coordinate system and crossing angle θC , φC are defined as

k0xyz(0) = [Ee, 0, 0,−k] , k > 0

P(0) = [EA, PA sin θC cosφ, PA sin θC cosφ, PA cos θC ] , P 2
(0) = M2

A (3)

For IP6, θC = 25 mrad and φC = π. For IP8, θC = 35 mrad and φC = 0. The event-by-event

electron and ion four-momenta are kµ and P µ. Fluctuations are assumed to be gaussian,

with rms values defined by the beam emittances and the interaction point β-functions as

defined in the EIC CDR (https://www.bnl.gov/ec/files/EIC_CDR_Final.pdf). The rms

angular spread of the beam in x and y at the IP is given by (numerical values for protons

of 275 GeV at IP6)

σ(x′) =

√
εx
β∗x

=

√
11.3 · 10−9 m

0.80 m
= 0.12 mrad

σ(y′) =

√
εy
β∗y

=

√
1.0 · 10−9 m

0.072 m
= 0.12 mrad. (4)

The proton rms momentum spread at 275 GeV is

σ(P )

P
= 6.6 · 10−4

with a time-energy emittance ellipse of area

εL = 0.7 ns ·GeV (5)
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Thus the uncertainty in the event-by-event CM energy squared is

∆se = (k + P )2 − (k0 + P0)
2 (6)

1.2. OVERVIEW OF THE ELECTRON ION COLLIDER 7

Table 1.1: Maximum luminosity parameters.

Parameter hadron electron

Center-of-mass energy [GeV] 104.9
Energy [GeV] 275 10
Number of bunches 1160
Particles per bunch [1010] 6.9 17.2
Beam current [A] 1.0 2.5
Horizontal emittance [nm] 11.3 20.0
Vertical emittance [nm] 1.0 1.3
Horizontal β-function at IP β∗x [cm] 80 45
Vertical β-function at IP β∗y [cm] 7.2 5.6
Horizontal/Vertical fractional betatron tunes 0.228/0.210 0.08/0.06
Horizontal divergence at IP σ∗x′ [mrad] 0.119 0.211
Vertical divergence at IP σ∗y′ [mrad] 0.119 0.152

Horizontal beam-beam parameter ξx 0.012 0.072
Vertical beam-beam parameter ξy 0.012 0.1
IBS growth time longitudinal/horizontal [hr] 2.9/2.0 -
Synchrotron radiation power [MW] - 9.0
Bunch length [cm] 6 0.7
Hourglass and crab reduction factor [17] 0.94
Luminosity [1034 cm−2 s−1] 1.0

luminosity upgrade of the LHC.

The main elements of the EIC that have to be added to the existing RHIC complex are:

• A low frequency photo-cathode electron source delivering up to 10 nC bunches of
polarized electrons at 1 Hz.

• A 400 MeV normal-conducting S-band injector LINAC.

• A 400 MeV to 18 GeV spin-transparent rapid-cycling synchrotron (RCS) in the RHIC
tunnel.

• A high-intensity ESR in the RHIC tunnel, with up to 18 GeV beam energy using su-
perconducting RF cavities.

• A high luminosity interaction region with 25 mrad crossing angle, crab cavities and
spin rotators that allows for a full acceptance detector; a second interaction region is
possible and feasible, but not included in the project.

FIG. 1. Beam parameters from EIC CDR.

III. KINEMATIC RECONSTRUCTION

A DVCS simulation, whether parametrized MC or full GEANT4 will produce final state

electron, ion, and photon with

Generated four-momenta: {k′, P ′, q′}Gen,

Reconstructed four-momenta: {k′, P ′, q′}.
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will reduce both the heat load due to the beam image current and will reduce the secondary
electron emission coefficient sufficiently so the electron cloud instability is suppressed (see
Section 1.11.3).

1.9.4 Intrabeam Scattering

Intrabeam scattering (IBS) is the effect of multiple Coulomb scattering of charged particles
off each other inside a bunched beam, taking into account the Lorentz boost. IBS causes
emittance growth in all oscillation planes of the beam. It limits the beam density needed
for high luminosities, and affects the luminosity lifetime and the average luminosity. Beam
parameters must be chosen to achieve an IBS growth time of several hours (given the beam
setup time of typically one hour) unless the emittance growth can be overcome by strong
cooling. Table 1.2 lists the beam parameters and calculated IBS growth times for the EIC
design parameters of protons at 41 GeV, 100 GeV, and 275 GeV.

Table 1.2: EIC proton beam parameters.

Parameter 41 GeV 100 GeV 275 GeV

Bunch intensity [1010] 2.6 6.9 6.9
RMS Horizontal normalized emittance [mm mrad] 1.9 4.0 2.8
RMS Vertical normalized emittance [mm mrad] 0.45 0.22 0.45
Longitudinal bunch area [eV s] 0.2 0.4 0.7
RF frequency [MHz] 197 591 591
RF voltage [MV] 10.5 16.1 28
RMS momentum spread [10−4] 10.4 9.0 6.6
RMS bunch length [cm] 7.5 7 6
Longitudinal emittance IBS growth time [hours] 3.8 2. 3.4
Horizontal emittance IBS growth time [hours] 3.4 2.3 2.0
(without coupling)

For the high luminosity parameters listed in Table 1.2, beam size growth due to IBS is
significant, and strong cooling is required to maintain the beam density and the luminosity
over a reasonable store time of at least several hours.

The parameters in Table 1.2 are based on reuse of the existing 197 MHz RHIC RF system,
and the addition of a new 591 MHz RF system for the hadron ring. The results are based on
a complete decoupling of the horizontal and vertical betatron motion, which is essential
to maintain unequal emittances in the horizontal and vertical plane. Very good vertical
orbit control is also mandatory to avoid any significant vertical dispersion. With strongly
suppressed vertical dispersion, there will be no significant emittance growth due to IBS in
the vertical plane.

FIG. 2. Energy dependence of proton beam parameters, from EIC CDR. Note that normalized
emittance εN (this table) and geometrical emittance values ε (Table 1.1 reproduced in Fig. 1) are
related by ε = εN ·M/P for a beam particle of mass M and momentum P .

for the scattered electron, ‘recoil’ ion, and final photon, respectively.

A. DIS and DVCS Invariants

The reconstructed electron DIS variables are defined in relation to the nominal beam

parameters as:

Q2
Rec = 2k(0) · k′Rec − 2m2

e

xB,Rec =
Q2

Rec

2(k(0) − k′) · P0

MA

MN

≤ 1 (7)

In contrast, the generated values are based on the event-by-event beam kinematics:

Q2
Gen = 2k · k′Gen − 2m2

e

xB,Gen =
Q2

Gen

2(k − k′Gen) · P0

MA

MN

(8)

There are at least two natural ways to define the momentum transfer four-vector:

∆µ
eγ = (k − k′ − q′)µ or ∆µ

NN = (P ′ − P )µ (9)
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This leads to the reconstructed and generated invariants

∆2
eγ,Rec = (k0 − k′ − q′)2

∆2
NN,Rec = (P ′ − P0)

2 (10)

∆2
eγ,Gen = (kGen − k′Gen − q′Gen)2 = (P ′Gen − PGen)2 = ∆2

NN,Gen (11)

B. Light Cone Vectors, Azimuthal Angles and Transverse Components

I now give invariant definitions of the azimuthal angles and transverse momentum transfer

∆2
⊥, in a manner consistent with the usual definitions in the target rest frame. To accomplish

this, define two sets of light cone vectors, first in the ep frame, and second in the γ∗p frame.

For simplicity, these can be constructed from the nominal beam momenta kµ0 , P
µ
0 and the

generated final photon four-vector q′Gen.

1. Electron Kinematics

Defining

δe =
m2
eM

2
A

(k · P )2
� 1 (12)

we construct light cone vectors

nµe = α

(
kµ +

m2
e/(k · P )

1 +
√

1− δe
P µ

)
ñµe = α̃

(
P µ +

M2
A/(k · P )

1 +
√

1− δe
kµ
)

n2
e = 0 = ñ2

e

ne · ñe = 1 provided αα̃ =
1 +
√

1− δe
2(k · P )

√
1 + δe

(13)

In this frame, the ‘+′ and ‘−′components of a four-vector Aµ are defined by A+ = A · n and

A− = A · ñ. With this convention in a frame in which the electron and ion are colliding

head-on, the incident electron and ion travel in the −ẑ and +ẑ directions, respectively.

To define Lorentz invariant azimuthal angles, we construct space-like unit vectors Xµ
e ,
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Y µ
e such that

X2
e = −1 = Y 2

e , Xe · Ye = 0

Xe · n = 0 = Xe · ñ, Ye · n = 0 = Ye · ñ

εµνρσñ
µ
eX

ν
e Y

ρ
e n

σ
e = 1, with ε0123 = 1 (14)

Since the EIC beams will collide nominally in the x ⊗ z plane, we start with a reference

vector

Y µ
Det = [0, 0, 1, 0]. (15)

Then remove the light cone components and renormalize

Y µ
e = [Y µ

Det − (YDet · n) ñµ − (YDet · ñ)nµ]
/√

1 + 2 (YDet · n) (YDet · ñ) (16)

The final basis vector is constructed as

Xe,σ = εµνρσn
µ
e ñ

ν
eY

ρ
e (17)

The Lorentz-invariant azimuthal angle of the scattered electron around the collision axis is

Φe = atan2 (−k′ · Ye,−k′ ·Xe) (18)

2. DVCS Kinematics

To define the DVCS kinematics, construct a second light cone frame based on (generated)

qµ and P µ.

δQ =
Q2M2

A

(q · P )2

nµq =
1√

2(1 + δQ)

[
qµ
MA

q · P + P µ δQ

MA

(
1 +

√
1 + δQ

)]

ñµq =
1√

2(1 + δQ)

[
P µ

(
1 +

√
1 + δQ

)
MA

− qµ MA

q · P

]
(19)

The space-like unit vectors are defined such that Yq ∝ k× k′.

Y µ
q = − sin ΦeX

µ
e + cos ΦeY

µ
e

Xq,σ = εµνρσn
µ
q ñ

ν
qY

ρ
q (20)
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The azimuthal angle Φγγ = −ΦNN of the final photon and the transverse momentum transfer

squared ∆2
⊥ = −∆2

⊥ are defined by√
∆2
⊥ cos ΦNN = −(k − k′ − q′) ·Xq = −(P ′ − P ) ·Xq√

∆2
⊥ sin ΦNN = −(k − k′ − q′) · Yq = −(P ′ − P ) · Yq (21)

Note, however, (k − k′) ·Xq = 0 = (k − k′) · Yq buy construction. Equivalently

Φγγ = atan2 (−q′ · Yq,−q′ ·Xq)

∆2
⊥ = (q′ ·Xq)

2
+ (q′ · Yq)2 (22)

Of particular importance to DVCS, the reconstructed value of ∆2
eeγ is independent of the

fluctuations in the initial ion beam momentum. This is not true for ∆2
NN .


