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I. INTRODUCTION

In this document, I define key variables for testing the DVCS reconstruction performance

of an EIC DVCS simulation. The notes include effects of beam emittance and crossing angle.

The DVCS cross section is differential in 5 kinematic variables. I suggest the following

invariant set: {
Q2, xB,∆

2 = t,Φe,Φγγ

}
(1)

The cross section is independent of Φe on an unpolarized (or spin-0) ion, but has a non-

trivial Φe dependence relative to the direction of polarization of a transversely polarized ion.

The usual azimuthal angles in the laboratory frame are not intrinsically Lorentz invariant,

I will give a proper definition below. It is also useful to define a subsidiary variable

∆2
⊥ = −∆2

⊥
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to be defined below.

Due to the emittance (longitudinal and transverse) of the incident beams, one must also

consider the variation of the cross section with se = (q + P )2. Thus I suggest to histogram

the reconstructed minus generated values of the following seven variables:

{
se, Q

2, xB,∆
2,∆2

⊥,Φe,Φγγ

}
(2)

II. BEAM PARAMETERS AND EMITTANCE

The nominal incident electron and ion four-momenta are kµ0 and P µ
0 , respectively. The

coordinate system and crossing angle θC , φC are defined as

k0xyz = [Ee, 0, 0,−k] , k > 0

P0 = [EA, PA sin θC cosφ, PA sin θC cosφ, PA cos θC ] , P 2
0 = M2

A (3)

For IP6, θC = 25 mrad and φC = π. For IP8, θC = 35 mrad and φC = 0. The event-by-event

electron and ion four-momenta are kµ and P µ. Fluctuations are assumed to be gaussian,

with rms values defined by the beam emittances and the interaction point β-functions as

defined in the EIC CDR (table...). Thus the uncertainty in the event-by-event CM energy

squared is

∆se = (k + P )2 − (k0 + P0)
2 (4)

III. KINEMATIC RECONSTRUCTION

A DVCS simulation, whether parametrized MC or full GEANT4 will produce final state

electron, ion, and photon with

Generated four-momenta: {k′, P ′, q′}Gen,

Reconstructed four-momenta: {k′, P ′, q′}.

for the scattered electron, ‘recoil’ ion, and final photon, respectively.
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A. DIS and DVCS Invariants

The reconstructed electron DIS variables are defined in relation to the nominal beam

parameters as:

Q2
Rec = 2k0 · k′ − 2m2

e

xB,Rec =
Q2

Rec

2(k0 − k′) · P0

MA

MN

≤ 1 (5)

In contrast, the generated values are based on the event-by-event beam kinematics:

Q2
Gen = 2k · k′Gen − 2m2

e

xB,Gen =
Q2

Gen

2(k − k′Gen) · P0

MA

MN

(6)

There are at least two natural ways to define the momentum transfer four-vector:

∆µ
eγ = (k − k′ − q′)µ or ∆µ

NN = (P ′ − P )µ (7)

This leads to the reconstructed and generated invariants

∆2
eγ,Rec = (k0 − k′ − q′)2

∆2
NN,Rec = (P ′ − P0)

2 (8)

∆2
eγ,Gen = (kGen − k′Gen − q′Gen)2 = (P ′Gen − PGen)2 = ∆2

NN,Gen (9)

B. Light Cone Vectors, Azimuthal Angles and Transverse Components

I now give invariant definitions of the azimuthal angles and transverse momentum transfer

∆2
⊥, in a manner consistent with the usual definitions in the target rest frame. To accomplish

this, define two sets of light cone vectors, first in the ep frame, and second in the γ∗p frame.

1. Electron Kinematics

Defining

δe =
m2
eM

2
A

(k · P )2
� 1 (10)
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we construct light cone vectors

nµe = α

(
kµ +

m2
e/(k · P )

1 +
√

1− δe
P µ

)
ñµe = α̃

(
P µ +

M2
A/(k · P )

1 +
√

1− δe
kµ
)

n2
e = 0 = ñ2

e

ne · ñe = 1 provided αα̃ =
1 +
√

1− δe
2(k · P )

√
1 + δe

(11)

In this frame, the ‘+′ and ‘−′components of a four-vector Aµ are defined by A+ = A · n and

A− = A · ñ. With this convention in a frame in which the electron and ion are colliding

head-on, the incident electron and ion travel in the −ẑ and +ẑ directions, respectively.

To define Lorentz invariant azimuthal angles, we construct space-like unit vectors Xµ
e ,

Y µ
e such that

X2
e = −1 = Y 2

e , Xe · Ye = 0

Xe · n = 0 = Xe · ñ, Ye · n = 0 = Ye · ñ

εµνρσñ
µ
eX

ν
e Y

ρ
e n

σ
e = 1, with ε0123 = 1 (12)

Since the EIC beams will collide nominally in the x ⊗ z plane, we start with a reference

vector

Y µ
Det = [0, 0, 1, 0]. (13)

Then remove the light cone components and renormalize

Y µ
e = [Y µ

Det − (YDet · n) ñµ − (YDet · ñ)nµ]
/√

1 + 2 (YDet · n) (YDet · ñ) (14)

The final basis vector is constructed as

Xe,σ = εµνρσn
µ
e ñ

ν
eY

ρ
e (15)

The Lorentz-invariant azimuthal angle of the scattered electron around the collision axis is

Φe = atan2 (−k′ · Ye,−k′ ·Xe) (16)
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2. DVCS Kinematics

To define the DVCS kinematics, construct a second light cone frame based on (generated)

qµ and P µ.

δQ =
Q2M2

A

(q · P )2

nµq =
1√

2(1 + δQ)

[
qµ
MA

q · P
+ P µ δQ

MA

(
1 +

√
1 + δQ

)]

ñµq =
1√

2(1 + δQ)

[
P µ

(
1 +

√
1 + δQ

)
MA

− qµ MA

q · P

]
(17)

The space-like unit vectors are defined such that Yq ∝ k× k′.

Y µ
q = − sin ΦeX

µ
e + cos ΦeY

µ
e

Xq,σ = εµνρσn
µ
q ñ

ν
qY

ρ
q (18)

The azimuthal angle Φγγ = −ΦNN of the final photon and the transverse momentum transfer

squared ∆2
⊥ = −∆2

⊥ are defined by√
∆2
⊥ cos ΦNN = −(k − k′ − q′) ·Xq = −(P ′ − P ) ·Xq√

∆2
⊥ sin ΦNN = −(k − k′ − q′) · Yq = −(P ′ − P ) · Yq (19)

Note, however, (k − k′) ·Xq = 0 = (k − k′) · Yq buy construction. Equivalently

Φγγ = atan2 (−q′ · Yq,−q′ ·Xq)

∆2
⊥ = (q′ ·Xq)

2
+ (q′ · Yq)2 (20)


